A time-frequency approach for EEG signal segmentation
محل انتشار: مجله هوش مصنوعی و داده کاوی، دوره: 2، شماره: 1
سال انتشار: 1392
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 1,044
فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JADM-2-1_008
تاریخ نمایه سازی: 9 اسفند 1393
چکیده مقاله:
The record of human brain neural activities, namely electroencephalogram (EEG), is known to be non-stationary in general. In addition, the human head is a non-linear medium for such signals. In many applications, it is useful to divide the EEGs into segments in which the signals can be considered stationary. Here, Hilbert-Huang Transform (HHT), as an effective tool in signal processing is applied since unlike the traditional time-frequency approaches, it exploits the non-linearity of the medium and nonstationarity of the EEG signals. In addition, we use Singular Spectrum Analysis (SSA) in the pre-processing step as an effective noise removal approach. By using synthetic and real EEG signals, the proposed method is compared with Wavelet Generalized Likelihood Ratio (WGLR) algorithm as a well-known signal segmentation method. The simulation results indicate the performance superiority of the proposed method
کلیدواژه ها:
EEG Signal Segmentation ، Time-Frequency Approach ، Empirical Mode Decomposition (EMD) ، Singular Spectrum Analysis (SSA) ، and Hilbert-Huang Transform (HHT)
نویسندگان
m azarbad
Department of Electrical and Computer Engineering, Babol University of Technology, Babol, Iran
h azami
Department of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
s sanei
Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, United Kingdom
a ebrahimzadeh
Department of Electrical and Computer Engineering, Babol University of Technology, Babol, Iran