improvement of learning from concept drifting data streams with unlabeled and mixed data
سال انتشار: 1393
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 771
فایل این مقاله در 23 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJMEC-4-12_028
تاریخ نمایه سازی: 16 فروردین 1395
چکیده مقاله:
In data streams analysis, detecting concept drifting is a very important problem for real-time decision making. most existing work on classification of data streams assumes that all streaming data are labeled and the class labels are immediately available. However, in real-world applications, such as credit fraud and intrusion detection, this assumption is not always valid. Most of the existing clustering approaches are applicable to purely numerical or categorical data only, but not the both. With this motivation, we propose a semi supervised classification algorithm for data stream with unlabeled and mixed numerical and categorical data(SUNM), in which, a decision tree is adopted as the classification model. When growing a tree, a new clustering algorithm is installed to produce concept clusters and label unlabeled data at leaves. In view of deviations between history concept clusters and new ones, potential concept drifts are distinguished from noise. The experimental results show the efficacy of the propos approach.
کلیدواژه ها:
نویسندگان
Farzaneh Azimi
Islamic Azad University Of Qazvin,Iran,
Karim Faez
Amirkabir University of Technology, Tehran, Iran,