Modeling and Hybrid Pareto Optimization of Cyclone Separators Using Group Method of Data Handling (GMDH) and Particle Swarm Optimization (PSO)

سال انتشار: 1392
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 959

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJE-26-9_007

تاریخ نمایه سازی: 17 خرداد 1393

چکیده مقاله:

In the present study, a three-step multi-objective optimization algorithm of cyclone separators is utilized for the design objectives. First, the pressure drop (Dp) and collection efficiency (h) in a set of cycloneseparators are numerically evaluated. Secondly, two meta models based on the evolved Group Method ofData Handling (GMDH) type neural networks are regarded to model the Dp and h as the required functions of geometrical characteristics. Finally, a multi-objective (MO) algorithm based on hybrid of Particle Swarm Optimization (PSO), multiple crossover and mutation operator are used for Pareto basedoptimization of cyclones considering two conflicting objectives Dp and h. By comparing the Pareto results of MOPSO with that of multi-objective genetic algorithms (NSGA II) regarding Pareto based multiobjective optimization of the obtained polynomial meta-models, it is shown that there are some interesting and important relationships as useful optimal design principles involved in the performance of cyclone separators

نویسندگان

m.j Mahmoodabadi

Department of Mechanical Engineering, Sirjan University of Technology, Sirjan, Iran

m Taherkhorsandi

Young Researchers Club, Rasht branch, Islamic Azad University, Rasht, Iran

h Safikhani

Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran