Optimizing of Iron Bioleaching from a Contaminated Kaolin Clay by the Use of Artificial Neural Network
محل انتشار: ماهنامه بین المللی مهندسی، دوره: 25، شماره: 2
سال انتشار: 1390
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 889
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJE-25-2_009
تاریخ نمایه سازی: 17 خرداد 1393
چکیده مقاله:
In this research, bioleaching of Iron from highly contaminated kaolin sample with Aspergillus niger was optimized. In order to study the effect of initial pH, sucrose and spore concentration on Iron, oxalic and citric acid concentration, more than twenty experiments were performed. The resulted data were utilized to train, validate and test the two layer artificial neural network (ANN). In order to minimize the over fitting, Bayesian regularization and early stopping methods with back propagation technique were utilized as training algorithm of ANN. Good validation for prediction of Iron removal percentage was resulted due to the inhibition of over-fitting problems with selection of appropriate ANN topology and training algorithm. The results showed that optimized condition of initial pH, sucrose and spore concentration to achieve high Iron removal (about 65%) should be 6, 60 g/l and 3.5×107 spore/l, respectively
کلیدواژه ها:
نویسندگان
m Pazouki
Materials and Energy Research Center, Karaj, Iran
y Ganjkhanlou
Materials and Energy Research Center, Karaj, Iran
a.a Tofigh
Materials and Energy Research Center, Karaj, Iran
m.r Hosseini
Department of Mining Engineering, Engineering Faculty, Shahid Bahonar University, Kerman, Iran