Customer Behavior Predict by Self-Training Algorithms

سال انتشار: 1394
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 668

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ITCC01_374

تاریخ نمایه سازی: 9 فروردین 1395

چکیده مقاله:

The most significant and impressing element in business, is the customer factor, that right after the entrance of the customer. The circuit of information stat to run the other subsequent progress in an organization. The mass amount entered information by customers, crested huge databases which are belonged to them. Now we are required to adopt the appropriate and props managing methods, to control and manage the data, in order to imp are the organization procedure and increase the resulted effectiveness. Data Mining is one of the suggested solutions for this issue, which almost is the best among all, and prepares the results with the least interruptions from the customer or user automatically explores the logical relationships algorithms. The main problem related to the interactions and relationships with customer is originated from the labeling, the majority of user's in formations are not labeled, although a few of them labeled learning the semi-supervised, is considered as a new reaction in the field of machine learning, that provides a good result with a few labeled information, accurately.The aim of this research is to modeling the attitude of customers via the semi-supervised method of management. One of the main requirements in the relationships with the customers in marketing is to create more complicates and effective model of the customer's attitudes, and also developing them. Hence, probably due to its difficulty it is considered as one of the problems in the customer's management. Accordingly for the time being to solve this problem and consenting the limitation of excited labeled data, the usage of the data mining based on the semi-supervised learning can be beneficial in order to accomplish a good method in the procedure of managing the relationships with the customers, to classify the significant users

نویسندگان

Siavash Emtiyaz

Department of Computer Engineering, Islamic Azad University of Sardasht, Sardasht, Iran

Shilan RahmaniAzar

Department of Computer Engineering, Islamic Azad University of Uromia, Uromia, IranAbstract

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Iatertatiotal Cotference OI Imformatiot Tecbrologv. Computer & Communication رایعذپژو0 28 ...
  • Huang, S.-M., Kwan, I. and Li, S.-H., Web Mining for ...
  • Conceptual Design, 2008. CAID/CD 2008. 9th International Conference on. 2008: ...
  • Dara, R.A., Khan, T., Azim, J., Cicchello, O. and Cort, ...
  • Ding, X., Li, Y. and Zhao, Y. A framework of ...
  • Al-Mudimigh, A.S., Ullah, Z. and Saleem, F. Data mining strategies ...
  • Al- Mudimigh, S.Z., Ullah F, Al-Aboud N. Efficient Implement of ...
  • management applications affect customer satisfaction? Journal of Marketing, Vol., No. ...
  • Baesens, B., Verstraeten, G., Van den Poel, D., E gmont ...
  • Buckinx, W., Verstraeten, G. and Van den Poel, D., Predicting ...
  • Zablah, A.R., Bellenger, D.N. and Johnston, W.J., An evaluation of ...
  • Galushkin, A.I., Neural networks theory. Vol. 420. 2007: Springer Berlin. ...
  • Provost, F. and Kohavi, R., Guest editors' introduction: On applied ...
  • نمایش کامل مراجع