Improving Dimensional Analysis Method to Determine System Leanness (Case Study: SAHAR Paint Industry)
محل انتشار: دهمین کنفرانس بین المللی مهندسی صنایع
سال انتشار: 1392
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,006
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
IIEC10_384
تاریخ نمایه سازی: 10 شهریور 1393
چکیده مقاله:
Measurement in lean manufacturing refers to system leanness, so manufacturers should constantly assess the degree of adaptability1 of their systems to lean manufacturing criteria; but the main problem in assessing system leanness is ignoring the measurement values of people according to their skills and also applying heterogeneous paired comparisons for measuring the lean manufacturing factors. The purpose of this paper is improving dimensional analysis method as an efficient approach to determine system leanness. In the other word, a new approach has been suggested that measuring the factors has done without pair comparison and considering the measured value of people in scoring lean manufacturing criteria for determining system leanness. In the improved method, weighted value of people and the number of judging people from one criterion to another can be variable. The case study of this research is relevant to SAHAR paint industry which is one of the largest paint manufacturers in Iran. The results of this research indicate that the mean square error between the proposed method and the known technique of dimensional analysis equal to 0.0026 that indicates a high accuracy and validity of the proposed method.
کلیدواژه ها:
نویسندگان
Abolfazl Gharaei
PhD Student, industrial engineering Kharazmi University Tehran, Iran
Mahboubeh Gharaei
Mechanical Engineering Zamyad Company Tehran, Iran
Behrooz Abbasi
PhD Student, industrial engineering Kharazmi University Tehran, Iran
Mahshid Teimouri Toulabi
PhD Student, industrial engineering Kharazmi University Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :