PREDICT CUSTOMER CHURN BY USING ROUGH SET THEORY AND NEURAL NETWORK

سال انتشار: 1391
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,741

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

IIEC09_098

تاریخ نمایه سازی: 26 اسفند 1391

چکیده مقاله:

A major concern for modern enterprises is to promote customer value, loyalty and contribution through services which can help establishing long-term relationshipswith customers. Organizations have found that retaining existing customers is more valuable than attracting new customers. Therefore, preventing customer churn by customer retention to achieve maximum profit is a critical issue in customer relationship management. In order to effectivelymanage customer churn for companies, it is important to build a more effective and accurate customer churn prediction model. Data mining and statistical techniques can be used to construct prediction models. This paper aims to identify most appropriate models base on data mining techniques. In this paper, rough set theory has been used for feature selection. It aims to find the most effective features in order to reducecustomer loss. Then, neural networks are used in order to create the model. Finally, to evaluate performance of the model five measures (accuracy, precision, Recall, F-measure, Lift) were used. Results show that our proposed model provides acceptable performance in terms of evaluation measures.

نویسندگان

Razieh Qiasi

University of Qom

Zahra Roozbehani

University of Shahid Beheshti

Behrooz Minaei-Bidgoli

University of Science and Technology

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Alam Khan, A., Jamwal, S., Sepehri, M.M.. Applying Data Mining ...
  • _ _ _ _ forecasting. Neu rocomputing, 72, 2009, pp. ...
  • _ _ _ , _ _ emails and evaluating multiple ...
  • Derrac, J., Cornelis, C., Garc Ia, S., & Herrera, F, ...
  • Dzulijana, P., & Basic, B. D. Churn prediction model in ...
  • Hadden, J., Tiwari, A., Roy, R., & Ruta, D, Churn ...
  • _ _ _ Systems with Applications, 36, 2009, pp. 6714-6720. ...
  • Richeldi, M., & Perrucci, A, Churn analysis casc study. Telecom ...
  • _ _ _ _ Expert ...
  • SAS International (2001). Predicting Churn. SAS Institute, Cary, NC. ...
  • SPSS Inc, Clementine 12.0 User's Guide, SPSS Inc., Anomaly Detection ...
  • Sun, Z., Bebis, G., & Miller, R. , Object detection ...
  • Tsai, C. F., & Chen, M. Y. , Variable selection ...
  • Verbeke, W., Martens, D., Mues, C., & Baesens, B. . ...
  • Zhang, X., Edwards, J, & Harding, J. Personalized online sales ...
  • _ _ _ _ Computers & Operations Research, 34(10), 2007, ...
  • Huang, B.Q., Kechadi, T.-M., Buckley, B., Kiernan, G, Keogh, E, ...
  • Hung, S. Y., Yen, D. C., & Wang, H. Y, ...
  • Lin, C. S., Tzeng, G. H., Chin, Y. C, Combined ...
  • Nie, G., Rowe, W., Zhang, L, Tian, Y., & Shi, ...
  • Norwegian University Of Science And Technology. ROSETT A Version 1.0.0.1. ...
  • Pawlak, Z, Rough sets theoreticl aspects of reasoning about data, ...
  • Pawlak, Z, Rough Sets. Informational Journal Of Computer And Information ...
  • نمایش کامل مراجع