PERMEABILITY PREDICTION OF AN IRANIAN RESERVOIR USING HYBRID NEURAL GENETIC ALGORITHM
محل انتشار: دومین کنفرانس بین المللی نفت، گاز و پتروشیمی
سال انتشار: 1393
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 594
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICOGPP02_274
تاریخ نمایه سازی: 29 آبان 1394
چکیده مقاله:
Prediction of permeability, as one of the most important parameters of a reservoir, has been one of the fundamental challenges to petroleum engineers. Exact knowledge of permeability value is indispensable for evaluating the hydrocarbon reservoirs, managements and development of a reservoir, forecasting of future production and design of production facilities. In this regard, different methods have been employed to estimate this important parameter. Direct measurements of permeability in the core analysis laboratories, applying correlations, well tests and well log data calibrated with core data are the most common practices of permeability measurement in petroleum industry. Each method has its own drawbacks and due to the reservoir heterogeneity, they may not be applicable in most of situations. Therefore, presenting a method which make it feasible to predict the permeability at different heterogeneity conditions is crucial. In the recent years Artificial Neural Networks (ANN) have been increasingly applied to solve various problems in the petroleum industry due to their intrinsic abilities to capture the complex heterogeneity in reservoirs. In this study, an artificial neural networks is applied to predict permeability from well logs data. To achieve more reliable results, the model was optimized by genetic algorithm (GA) as a revolutionary technique. The model was developed by 675 data gathered from 4 wells in south of Iran. MSE and R2 of 0.0016 and 0.99072 respectively, confirmed the accuracy and capability of this developed model in predicting of permeability
کلیدواژه ها:
نویسندگان
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :