Modeling and analysis of thermal conductivity of sandstone at high pressure and temperature using optimal artificial neural networks

سال انتشار: 1391
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 2,057

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICOGPP01_028

تاریخ نمایه سازی: 22 مرداد 1391

چکیده مقاله:

Thermal conductivities (TC) of porous media are among the most important information for hydrocarbon bearing reservoir thermal simulation andassessing the efficiency of thermal enhanced oil recovery process, both for the scientific purposes and engineering design. In the present study a novel method for estimation of effective TCs of dry sandstone at a wide range of pressure and temperature has been proposed. Multi-layer perceptron neural network (MLPNN) with optimal configuration was employed to model the effective TCs of sandstone as a function of temperature,pressure, porosity and density. Statistical error analysis confirmed that a MLP network consisting of only one hidden layer composed of fifteen eurons exhibited the best generalization results and therefore can be considered as an optimal topology. The capability of the optimal MLPNN model wasvalidated and benchmarked by its application to experimental effective TCs which were collected from various literatures. The collected experimentaldata were randomly divided into two training and testing data set. Application of the optimized MLP model for 255 experimental effective TCs data gavean absolute average relative deviation percent (AARD%) of 3.63% and 4.47% for the training and testing subsets respectively. The proposed model alsoindicated the 0.97427 for the square of the correlation coefficient (R2) over total data set. Furthermore, the predictive capability of the proposed technique was compared with that of conventional recommended model in the literature. The comparison of the results showed that the proposed neural network is superior to the considered method, with respect to accuracy as well as extrapolation capabilities. The resultsjustify that the proposed optimal MLPNN model can simulate the effective thermal conductivity of sandstones with acceptable error and present excellent agreement with experimental data

نویسندگان

Parviz Darvishi

Chemical Engineering Department, School of Engineering, Yasouj University, Yasouj, Iran

Behzad Vaferi

School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Jr. Stalkup, I. Fred, Status of miscible displacement, J. Pet. ...
  • T.C. Boberg, Thermal method of oil recovery, Wiley, NJ, 1988. ...
  • J. Burger, P. Sourieau, M. Combarnous, Thermal methods of oil ...
  • R.M. Butler, Thermal recovery of oil and bitumen, Prentice-Hall, Calgary, ...
  • R.S. Beniwal, R.V. Singh, D.R. Chaudhary, Heat losses from _ ...
  • A. Sasaki, S. Aiba, H. Fukuda, A study on the ...
  • B.O. Sraphin, J.A. Aranovich, Solar energy _ onversion-solid -state physics ...
  • D. Staicu, D. Jeulin, M. Beauvy, M. Laurent, C. Berlanga, ...
  • C. Gruescu, A. Giraud, F. Homand, D. Kondo, D.P. Do, ...
  • A.C. Seto, Thermal Testing of Oil Sands, M.Sc. thesis of ...
  • J.D. Scott, A.C. Seto, Thermal Property Measuremet _ Oil Sands, ...
  • L.G. Hepler, C. Hsi, AOSTRA Technical Handbook on Oil Sands, ...
  • W.H. Somerton, Thermal Properties and Temp erature-related Behavior of Rock/Fluid ...
  • M.C. Roufosse, P.G. Klemens, Lattice thermal conductivity of minerals at ...
  • H. Ozbek, Thermal conductivity of multi-fluid saturated porous media, PhD ...
  • P. Zehner, E.U. Schlunder, Therma] conductivity of granular materials at ...
  • SK. Doherty, Control of pH in chemical process using artificial ...
  • M.T. Hagan, H.B. Demuth, M. Beale, Neural network design, PWS ...
  • X.M. Zhang, Y.Q. Chen, N. Ansari, Y.Q. Shi, Mini- Max ...
  • A.R. Jumikis, Thermal Soil Mechanics, Rutgers University Press, New Jersey, ...
  • Z. Abdulagatova, I.M. Abdulagatov, V.N. Emirov, Effect of temperature and ...
  • S.N. Emirov, E.N. Ramazanova, Thermal Conductivity of Sandstone at High ...
  • I.M. Abdulagatov, S.N. Emirov, Z. Abdulagatova, S.Y. Askerov, Effect of ...
  • Determination of the therml conductivity of rock from P wave ...
  • C. Clauser, A. Hartmann, A. Koch, D. Mottaghy, R. Pechnig, ...
  • M. Abid, Thermoph ysical properties of Sander Hot-Bridge ...
  • Jahrestagung 2010 des AK Thermophysik in der GEFTA, htt: //akh ...
  • A.A. Rohani, G. Pazuki, H. Abedini Najafabadi, S. Seyfi, M. ...
  • B. Vaferi, R. Eslamloeyan, S. Ayatollahi, Automatic recognition of oil ...
  • S. Nasseh, A. Mohebbi, A. Sarrafi, M. Taheri, Estimation of ...
  • K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are ...
  • Approximators, Neu. Net. 2 (1989) 359-366. ...
  • K. Funahashi, on the approximate realization of contiuous mappings by ...
  • G.V. Cybenko, Approximation by superpositions of a sigmoidal function, Math. ...
  • E.J. Hartman, J.D. Keeler, J.M. Kowalski, Layered neural networks with ...
  • H.L. Royden, Real analysis, 2nd ed, Macmillan, New York, 1988. ...
  • C. Xiang, S.Q. Ding, T.H. Lee, Geometrical Interpretation and Architecture ...
  • K.L. Du, M.N.S. Swamy, Neural Networks in a Softcomputing Framework, ...
  • L.F. Terrence, Feedforward Neural Network Methodology, Springer, New York, 1999. ...
  • R. Reed, Pruning algorithms-A survey, IEEE Trans Neural Networks. 4 ...
  • H. Chan drasekaran, H.H. Chen, M.T. Manry, A Neural Network ...
  • Y. Hirose, K. Yamashita, S. Hijiya, B ack-prop agation algorithm ...
  • S. Samarasinghe, Neural networks for applied science and engineerin g-rom ...
  • S. Kung, J. Hwang, An algebraic projection analysis for optimal ...
  • J. Sietsma, R.J.F. Dow, Neural net pruning - why and ...
  • R.P. Lippmann, An Introduction o Computing with Neural Nets, IEEE ...
  • R. Anand, K.G. Mehrotra, C.K. Mohan, S. Ranka, Efficient Classification ...
  • نمایش کامل مراجع