RF-SBC-based approach for discriminating G protein-coupled receptors using amino acid composition property

سال انتشار: 1394
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 572

فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICFUZZYS14_041

تاریخ نمایه سازی: 21 اردیبهشت 1397

چکیده مقاله:

G protein-coupled receptors (GPCRs) constitute the largest superfamily of integral membrane proteins (IMPs) that extremely contribute in the flow of information into cells. In this paper, a random forest (RF) approach for determining the importance of input variables and the subtractive clustering and fuzzy c-means (SBC) method have been proposed for discriminating the GPCRs from non-GPCRs using twenty amino acid compositions of GPCR sequences. The studied dataset was derived from UniProt/SWISSPROT database and consists of 1000 GPCR and 1000 non-GPCR reviewed sequences. The RF-SBC-based method discriminates GPCRs and non-GPCRs successfully with the accuracy, sensitivity, specificity and Matthew‘s coefficient correlation (MCC) rates of 98.7%, 98.81%, 98.59% and 0.974, respectively. These rates were obtained from averaged values of 5-fold cross validation by using only fifteen out of twenty amino acid composition features. The results showed that our RF-SBC-based method outperforms other existing algorithms in terms of accuracy, sensitivity, specificity and MCC measures in discriminating GPCRs from non-GPCR proteins.

نویسندگان

Babak Sokouti

Ph.D. Student, Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,

Farshad Rezvan

Ph.D, Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,

Siavoush Dastmalchi

Academic member, Biotechnology Research Center & School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran,