Auxiliary Unscented Particle Cardinalized Probability Hypothesis Density

سال انتشار: 1392
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,193

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICEE21_456

تاریخ نمایه سازی: 27 مرداد 1392

چکیده مقاله:

The probability hypothesis density (PHD) filter has been recently introduced by Mahler as a relief for the intractable computation of the optimal Bayesian multi-targetfiltering. It propagates the posterior intensity of the random finite set (RFS) of targets in time. Despite serving as a powerfuldecluttering algorithm, PHD filter still has the problem of largevariance of the estimated expected number of targets. The cardinalized PHD (CPHD) filter overcomes this problemthrough jointly propagating the posterior intensity and the posterior cardinality distribution. Unfortunately, the particlefilter implementation of the CPHD filter suffers from lack of anefficient method for boosting its efficiency other than the inefficient Bootstrap particle filter. We propose auxiliaryunscented particle implementation of the CPHD filter as a solution to this problem. Numerical simulations indicate significant improvement in the estimation accuracy of the proposed algorithm over the available Sequential Monte Carlo (SMC) implementation of the CPHD filter.

کلیدواژه ها:

Multi-target tracking ، Random finite sets ، Cardinalized probability hypothesis density filter ، Auxiliary unscented particle filter

نویسندگان

Meysam R. Danaee

Department of Electrical Engineering, Sharif University of Technology