Well-Placement Optimization
سال انتشار: 1392
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 958
فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ETEC03_358
تاریخ نمایه سازی: 7 آبان 1393
چکیده مقاله:
Oil production optimization is one of the main concerns of the reservoir management. In this regard, optimal location of wells can lead to a significant increase in the oil production. The purpose of this research is to investigate a new extension of the Automatic well-placement optimization technique maximizing the net present value (NPV) of the oil production. Since finding the optimal location of wells may require expensive and time consuming iterations through the reservoir simulator, we propose a deterministic (gradient-based) algorithm to address this issue. Our approach is based on searching the neighbourhood of the initial well which is called the pseudo-wells in order to find the optimal location of wells. Since these pseudo-wells inject or produce at a very low rate, they have a minor effect on the overall flow throughout the reservoir. In this work, we first calculate the gradient of NPV with respect to the flow rate in the pseudo-wells using an adjoint-based method. This helps us to find improving directions on the basis of which the optimal locations of wells can be determined. This searching method continues until no further improvement in the NPV is achieved. The main contribution to the previous works is that instead of using a fixed step size, a variable step size strategy is used which reduces the total convergence time. The method is applied to three water flooding cases.
کلیدواژه ها:
نویسندگان
Morteza Hassanabadi
Corresponding author, PhD Student at TU Delft University
Neda Beheshti As
PhD Student at Amirkabir University
Arnold Heemink
Professor, TU Delft University
Jan Dirk Jansen
Professor, TU Delft University
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :