Studying of oil and protein in native Salicornioideae sub-family in Iran according to produce Industrial and food products
سال انتشار: 1394
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 805
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ASECONF01_102
تاریخ نمایه سازی: 30 بهمن 1394
چکیده مقاله:
Plants in Amaranthaceae family are significant in different aspects such as industrial, food, medicinal and fodder. Some countries try to establishment of experimental farms in order to grow this plant and remarkable success have gained in the field of industrial and edible oil seeds and other products. This family is salinity resistance. In this study, according to diversity and the high distribution of this family in Iran plant flora try to evaluate amount of oil and protein in different genus at the national level. In this study, the amount of oil was obtaind by Suklse method and amount of protein by Kjldal and Bradford method. Collected samples contain Salicornioideae sub-family and different genus from this family. Totally, there are 20 samples. Results come from protein dendrogram showed that Azerbaijan samples in terms of protein have the high similarity with European samples but, finally genus H. Strobiaceum had the highest amount of proten, and collected genus S. Iranica from Sharafkhany region of Azerbaijan and Persian Maharlou had the highest amount of oil and protein
کلیدواژه ها:
نویسندگان
ali Mohammadi
Biotechnology Research Center, Science and Technology Institute, Tehran, Iran.
zohre heidarian
Agronomy department, Plant Biotiechnology, Faculty of Agriculture, University of Shiraz. PhD., Assistant Prof of Dept. Of Crop Production and Plant Breeding
alireza habibzade
Msc-plant Biotechnology. Biotechnology Research Center-Institute for Science and New Technologies
roya polkhani
Msc-weed science . University of Shiraz
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :